
A Computer Vision Approach to Monitoring beehive Activity

Maxime de Belloy
Stanford University

belloy@stanford.edu

1. Abstract

This paper introduces a non invasive beehive monitoring
approach by quantifying entrance activity for a given hive
through video analysis. Our approach uses a three stage
pipeline for counting. It first detects the hive entrance ramp
and resizes the image to only look at the ramp and then it
detects individual bees in each frame. Finally, it tracks each
bee’s trajectory using a Kalman filter to distinguish arrivals
from departures. We create a pipeline capable at running
live at over 60 fps while counting individual bees’ entrances
and exits at above 85% accuracy.

2. Introduction

Bees are essential to the proper pollination of many
plants that are a key part of the worldwide agricultural pro-
duction. The common honey bee, Apis Mellifera, is dy-
ing at unprecedented rates, in particular because of colonies
collapsing because of attacks from Varroa mites. Tradi-
tional beekeeping and even most monitoring systems re-
quire opening the hive and pulling out individual frames to
assess a hive’s health. This stresses the bees and should be
done as infrequently as possible. This project therefore aims
to use computer vision to un-intrusively monitor a hive’s
health by keeping track of a hive’s activity.

This system takes video footage of the entrance of a hive
as input. Then, we look at tallying the number of bees that
enter or exit a hive over the course of the video. If the
video quality is good enough, this can then be integrated
with other pre-existing models for pollen and Varroa mite
detection. The result is then a histogram through time of
the number of bees that enter or exit the hive, as well as the
percentage of arriving bees carrying pollen or a mite.

In particular, this requires detecting the hive’s take-off
ramp from the video and then detecting for each frame all
bees on the ramp. The ramp is a piece of wood sticking
out from the hive where bees can take off and land from.
Then, across frames, bees’ trajectories have to be computed
to track their movements and determine if the bee is leaving
or arriving into the hive. For the ramp detection, both a ba-
sic CNN and a finetuned YOLO11[4] were tested. Then, the

frame is cropped to the ramp, and another finetuned YOLO
model is used to find the bees. Finally, a Kalman filter is
used to predict each bee’s trajectory and determine if it is
entering or exiting the hive.

3. Literature review
Some research has already been published in the hive

monitoring space. The most important for this project is a
paper by Kongslip et al[5]. In their paper, the authors set
up a beehive with clear paneling so that they could continu-
ously film the inside of the frame. They then implemented a
bee detection model, and used a Kalman filter tracking sys-
tem to track bee movements across the frame. The basis of
their algorithm will be essential in this project, although the
environment is quite different. In this paper, they were look-
ing at frames with hundreds of bees in each frame, where
each bee moves very slowly since they do not fly inside the
hive. Moreover, the whole frame was in shot the entire time,
under seemingly constant lighting conditions. In our case,
we are filming the entrance of the hive, with fewer, but much
faster moving bees.

For a more general overview of the field, we turn towards
research from Bilik et al[2]. They surveyed over 50 papers
related to automated beehive monitoring using computer vi-
sion, categorizing approaches into conventional techniques,
CNN-based classifiers, and object detectors. They found
that there is a steep increase in publications in this field
since 2016, and in particular an increased adoption of object
detection for bee traffic monitoring since 2021. They split
their survey into four primary categories: pollen detection,
Varroa mite detection, traffic monitoring, and general bee
inspection. Their research particularly notes the importance
of relatively compact models that can run on in the field
embedded systems using Raspberry Pi or NVIDIA Jetson
platforms for real-time processing. They posit that detec-
tion approaches like YOLO and SSD are the most common
since they can handle multiple fast-moving objects simul-
taneously. For this reason, we decide to fine tune a YOLO
model for our needs. Their paper also gives an overview
of the available datsets in the field, which we can pick and
choose from.

1

It is also important to look at Mahajan et al’s[7] paper.
They present a beehive monitoring system called Neural-
Bee. Their study compares object detection models like
YOLOv5, v7, v8, and SSD for detecting Varroa mite in-
festations. They found that their finetuned YOLOv5 model
achieved a precision of 0.962 and mAP@0.5 (metric ex-
plained later) of 0.974. We note that they also include inter-
esting non-vision approaches. They built an audio analysis
system that classifies a hive as strong or weak with 99.8%
accuracy using Mel spectrograms and Mel-frequency cep-
stral coefficients (MFCCs) as input features. The audio
component is a smart, non invasive monitoring method that
would be cheaper to implement, and works well in tandem
with vision methods.

We also note that there are a few pre-trained, open source
models for Varroa mite detection like the Varroa Detec-
tor model[1] or the Varroa Mites Detector model [12] with
performances of 97.4% mAP@0.5 (97.0% precision) and
79.4% mAP@0.5 (79.7% precision) respectively, offering
accessible solutions for beekeepers who may not have the
resources to train their own models from scratch.

While these require very close up images of particular
bees, we note that these models could be a good addition to
our model if it is deployed on real hives for a better overall
understanding of hive health.

4. Dataset

We use a detection dataset from Sledevic et al[10], that
contains 7,200 annotated still frames captured from eight
different beehives with bounding boxes for each bee, an ex-
ample of which (cropped to just show the hive ramp) can
be seen with plotted labels in Figure 1. The images are
sized at 1920 by 1080. This dataset also includes 156 im-
ages of hive ramps / entrances with bounding box annota-
tions, which will help us train a detection model for both
the ramps and bees. To test our model, we will use a 2
minute video of the entrance of one of these hive, labeled
with bee trajectories. To speed up training and match the
YOLO defaults, we start by preprocessing these images and
reformatting them to 640 by 640. The image ratio is kept
the same, and padding is added to fill the square.

5. Methods

5.1. Ramp Detection

We start by training a baseline model for the hive’s ramp
detection on our 156 images, using a basic 3 layer CNN we
train from scratch. It’s architecture is shown in Figure 2.

We then decide to finetune a YoloV11[4] nano model
on the same dataset following the results found from the
Mahajan[7] paper described above. We use a batch size of
8, image size of 416px, and train for 200 epochs. We pick

the smallest available model (nano) since the task is sin-
gle class and relatively easy. We also increase the box loss
weight (15.0), and decrease the classification loss weight
(0.25). This is because this is a single class problem where
we care more about getting the exact correct bounds for the
ramp rather than being 100% confident we have found a
ramp. This is especially true since we assume that there
will always be a ramp present in the image.

Getting the bounding box for the ramp lets us focus only
on the part of the image where bees are entering and exit-
ing the hive. We don’t want to track or count bees that are
simply flying in frame or exiting the frame unless they are
exiting the ramp into the beehive.

Input

Conv1

MaxPool

Conv2

MaxPool

Conv3

Upsample

Output

640×640×3

64, 3×3

2×2

128, 3×3

2×2

256, 3×3

2×2

Sigmoid

Figure 2. CNN architecture for submarine detection.

5.2. Ramp detection results

Having trained our baseline CNN and fine tuned the
YoloV11 model for ramp detection, we show in Figure 3
that the models accurately detect the ramp from the image.
From immediate visual inspection, both models seem to be
working well.

We compare our models on Mean Average Precision
(mAP). This metric relies on the Intersection over Union
(IoU) metric defined as:

IoU(A,B) =
|A ∩B|
|A ∪B|

=
Area of Intersection

Area of Union
(1)

We use two versions in particular:

• mAP@0.5: Average precision calculated at an IoU
threshold of 0.5. A predicted bounding box is consid-
ered a true positive if its IoU with ground truth exceeds
0.5.

Figure 1. Labelled bee dataset example

Figure 3. YOLOv11 Ramp Detection

• mAP@0.5:0.95: Average of AP values computed
across multiple IoU thresholds from 0.5 to 0.95 in 0.05
increments. This metric penalizes poor localization
more severely than mAP@0.5.

Table 1. Ramp Detection Model Performance Comparison
Metric Baseline CNN YOLOv11
mAP@0.5 0.7119 0.9950
mAP@0.5:0.95 0.2533 0.9810

We see that the finetuned Yolo model greatly outper-
forms our simple CNN baseline. While both models are
able to pick out the ramp in the image, the baseline usually
uses a too large or poorly centered bounding box, causing
its scores to decrease. We decide to move forward with the
former for our detection pipeline.

5.3. Bee Detection

5.3.1 Cropping then training

For bee detection, we start by cropping the 7200 images
from the Sledevic dataset[10] using our ramp detection
model to focus on the area of interest. The Yolo model at in-
ference is very quick, taking 0.3ms per image. This gives us
cropped images as seen in Figure 1. Our images get cropped
from 1920 by 1080 to around 1700 by 380 depending on the
bounding boxes from the detection model. We also have to
change the labels to match the cropped image. We apply


x′ = x·W−x1

x2−x1

y′ = y·H−y1

y2−y1

w′ = w·W
x2−x1

h′ = h·H
y2−y1

(2)

with x, y, w, h the original normalized bee bounding box
coordinates, (x1, y1, x2, y2) the detected ramp region’s top
left and bottom right corner, and W / H the original image
width / height respectively. We get transformed coordinates
(x′, y′, w′, h′) in the cropped image space. We clip these
from [0, 1], which removes the labels that are outside the
new image space.

Again, we decide to finetune another YOLOV11 model
here. Since we have a much larger dataset, we train for 15
epochs (3 of which dedicated for warmup) with a batch size
of 32 on the small model. We also use automatic mixed
precision (AMP) for faster training.

5.3.2 Training then cropping

However, we note that YOLO models can only be trained on
square images. Our cropped images have ratio around 5:1
depending on the ramp, with image sizes of around 1700
by 380. When scaled down and padded, the resulting im-
age used for training is mostly gray padding vertically, with
the bees being squashed in the center rows of the image.
To combat this issue, we decide to also test fine-tuning our
model before cropping to the ramp space. These images
however, also contain the grass around the hive and the hive
itself in frame, meaning that the model will have to learn to
find bees in more diverse environments.

Again, we train our YOLO small model for 15 epochs
and use AMP, freezing the top 10 layers and downsampling
the image to 640 by 640.

5.4. Bee Detection Results

For each model, we also calculate precision and recall:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(3)

where TP, FP, and FN represent true positives, false posi-
tives, and false negatives, respectively.

Figure 4. Bee Detection Predictions

We get the results shown in Table 2, and we plot an ex-
ample of the model’s output in Figure 4. From this and
other visualized predictions, we note that the model accu-
rately counts many different target bees on the ramp, but
also seems to be flagging some false positives in the grass
around the ramp and in some of the striated wood grain. We
see from the table that cropping the image before training
yields better results in our reported metrics excluding preci-
sion, with a 10% performance increase in mAP@0.5:0.95
and a 6% increase in recall.

Metric No Cropping Ramp Cropping
Precision 0.955 0.948
Recall 0.883 0.935
mAP@0.5 0.949 0.970
mAP@0.5:0.95 0.647 0.712

Table 2. Bee Detection Performance: Impact of Cropping On
Ramp Before Training

Given the noticed improvement, we decide to use
the model finetuned on pre-cropped images for the final
pipeline.

6. Bee Tracking
Now that we have both a ramp and bee detection model,

we need to track bee trajectories. This will be tested on
a labeled video with 5973 frames. The labels are for all
bees in the video, not just the ones on the ramp. To define
our ground truth, we use our ramp detection model to get a
bounding box for the ramp in the video. We then count the
number of labeled trajectories that pass through the ramp
bounding boxes, and that end with the bee crossing the ramp
towards the hive (top of the bounding box since the hive is
above the ramp in these videos). These are marked as en-
trances. All other trajectories that go through the bounding
boxes are counted as exits.

In our test video, we get ground truth values of 346 en-
trances and 185 exits for a total trajectory count of 531 bees.

6.1. Baseline

We define a very simple baseline. In each frame, we use
our bee detection model to count the number of bees on the
ramp. To decrease noise from flickering, we average bee

counts over 2 frames. Between each pair of frames, we find
the difference of number bees on the ramp, and assume that
half of them are entrances and half are exits.

6.2. Trajectory Tracking

We start by detecting the ramp by running our ramp de-
tection model over the first 100 frames of the video and tak-
ing the median for each of the four corners of the bounding
box. This gives us a good estimate of the ramp.

Then, for each frame, we use our bee detection model to
find the bees currently in frame. To reduce detection flicker-
ing, we buffer k consecutive frames and cluster detections
where ∥center(di) − center(dj)∥ < 30 pixels. Each clus-
ter is averaged as d̄ = 1

|C|
∑

d∈C d before feeding to the
tracker. Like above, we run two tests, feeding in both the
cropped and non cropped image to the model for bee detec-
tion.

6.3. Kalman Filter Tracking

If we are on the first series of averaged frames, then we
initialize Kalman filters for each of the detection. These are
set up with state vector x = [x, y, ẋ, ẏ, w, h]T encoding po-
sition, velocity, and bounding box dimensions. The model
is defined by:

F =


1 0 ∆t 0 0 0
0 1 0 ∆t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(4)

For following frames, we start by predicting every
Kalman filter forward one step. For each currently active
track τi, we compute:{

xi
k|k−1 = Fxi

k−1

Pi
k|k−1 = FPi

k−1F
T +Q.

(5)

where Q = 0.01I6 represents process noise.
Now we have predicted locations for each bee that was

previously in frame, and we need to either match the de-
tected bees from the current frame to previous tracks or have
them start their own tracks.

6.4. Hungarian Algorithm for Data Association

To do this, we implement the Hungarian Algorithm [6].
With n existing tracks and m new detections, we create a
cost matrix C ∈ Rn×m such that

Cij = 1− IoU(tracki, detectionj) (6)

with IoU as defined in equation 1 above.

Figure 5. Bee Trajectory Tracking

To find an optimal assignment between new tracks and
old tracks, we solve:

min
X

n∑
i=1

m∑
j=1

CijXij s.t.
m∑
j=1

Xij ≤ 1,

n∑
i=1

Xij ≤ (7)

with Xij ∈ {0, 1}
This optimization problem solves for the minimum total

assignment cost between tracks and detections. The Hun-
garian algorithm solves this problem in polynomial time,
namely in O(max(n,m)3) time through augmenting paths
in the bipartite graph, processing the dual problem to keep
track of the optimality conditions, and clever row and col-
umn reduction.

Matched pairs with IoU values of 0.3 or greater
count as Kalman updates, while unmatched detec-
tions create new tracks with initial covariance P0 =
diag[502, 502, 1, 1, 102, 102].

When a detection is matched, the respective Kalman
filter is updated appropriately: The measurement z =
[xcenter, ycenter, w, h]

T updates the state via:{
K = Pk|k−1H

T (HPk|k−1H
T +R)−1

xk = xk|k−1 +K(zk −Hxk|k−1)
(8)

where measurement noise R = 0.1I4.
To make sure that we are not tracking noise, we re-

quire that each track have a detection in its first 3 averaged
frames. Moreover, tracks that exist for 5 frames without any
new detections get terminated. When a track is stopped,
the whole trajectory {(x1, y1), (x2, y2), ..., (xf , yf)} gets
saved for entrance / exit classification. Since we don’t have
depth information from our video, bees that fly above the
ramp but don’t actually land on the ramp are also counted
as exits or entrances even though they should count as nei-
ther. This is a non-issue once we add averaging, since flying

bees don’t stay in frame long, so they wouldn’t be picked up
over multiple frames.

Figure 5 shows an example of an intermediate frame
where the yellow lines are the plotted bee trajectories, blue
bounding boxes show the detected bees, red boxes the
ground truth for bees, and the green box shows the ramp.

We classify trajectories based on whether or not they end
close to an edge of the ramp’s bounding box. We call a tra-
jectory an entrance if its endpoint is within the horizontal
bounds of the ramp, and ends within 30% of the top bound
of the ramp. This is a good substitute for the bee enter-
ing the hive and going out of sight. Trajectories that pass
through the ramp, but end outside of the ramp bounds are
classified as exits.

The output of the pipeline is a histogram of entrances
and exits to the hive as seen in Figure 6

7. Results
We run the complete pipeline on the 5973 frames with

and without cropping and get the results shown in Table 3.
We see that averaging over 4 or 5 frame yields the best re-
sults, and, not cropping the image to just include the ramp
makes counting the number of exits fail dramatically. This
is due to the fact that we are looking for tracks that end
outside the ramp boundary, and so we can’t properly de-
tect tracks ending near the edges since the frame is cropped
down to the ramp boundary already. We also clearly see,
unsurprisingly, that the baseline completely overestimates
the number of bees since it doesn’t know to differentiate
between detection errors, flickering, and clumps of bees.

When not cropping the input model and settling for aver-
aging over four frames, we get a promising indicator of the
true number of entries and exits. In fact, if we don’t care
to distinguish between entries and exits, and use a frame
averaging of five for entrances and four for exits, we get a
total number of tracked trajectories within 7% of the ground

Figure 6. Bee Movements Histogram

Method Entrances Exits
Truth 346 185
Baseline 898 (+160%) 898 (+385%)
Frame Avg No Crop Crop No Crop Crop
1 133 (-62%) 170 (-51%) 104 (-44%) 10 (-95%)
2 138 (-60%) 183 (-47%) 118 (-36%) 13 (-93%)
3 161 (-53%) 223 (-36%) 165 (-11%) 10 (-95%)
4 219 (-37%) 269 (-22%) 201 (+9%) 11 (-94%)
5 295 (-15%) 347 (+0%) 271 (+46%) 11 (-94%)
6 545 (+58%) 564 (+63%) 569 (+208%) 15 (-92%)

Table 3. Bee tracking results with different frame averaging values

truth.

8. Discussion
The importance of this work is also that it is usable in the

field. As such, it needs quick inference and compute times.
We decide to use a frame averaging value of four. These
timing results are from a run on an M2 MacBook Air. We
get, for inference:{

With cropping → µ = 12.31ms, σ = 0.551ms

Without cropping → µ = 20.52ms, σ = 0.723ms

Inference times are consistent independently of the num-
ber of bees in frame since the same computation with the
same model weights from the fine tuned model is applied
in all cases. We also note that our pre processing cropping
strategy (with cropping) is quicker since the resulting image
passed to the model is smaller.

However, the number of detections impacts the Kalman
update computation steps. Figure 7 shows compute times
for the Kalman Filter update step with respect to how many
bees were detected in frame. We know that the Hungar-
ian algorithm solves this problem in O(max (n,m)3) with
n and m the number of existing tracks and new detections
respectively. time. However, since we are dealing with such
small values, the cubic polynomial doesn’t get a chance to
grow very large. Even with 12 bees in frame, the update
steps takes less than 10ms.

Figure 7. Kalman Filter Compute Time

Using cropping and assuming an average of five bees per
frame, we get an average compute time per frame of 12.31+
3.49 = 15.8ms. This lets us process videos live at up to 63
frames a second on an M2 MacBook Air. We note that if
we wanted to deploy this pipeline into the field, we would
need to reduce frame rate or train a smaller model to run on
smaller devices like a Raspberry Pi.

9. Future Work
While this project has shown promise, there are several

key areas for future work. Firstly, and the easiest next step,
is to train the fine-tuning for the bee detection model much
longer or on a much larger image size. This will help the
model become better at detecting bees in the video frames,
which will help avoid trajectory dropouts from detection er-
rors or flickering. Another area for improvement would be
to look at a more sophisticated way of dealing with detec-
tion dropouts and errors than simply averaging over mul-
tiple frames. While this seems to work relatively well, it
comes as a trade off with the accuracy of the Kalman match-
ing, since more averaging decreases detection errors, but
makes the bees move further during each update step. If
many bees are closely clumped together, it will be hard to
accurately match each bee to its previous track when frame
rate decreases.

10. Conclusion
Overall, we’ve created a pipeline that detects a beehive’s

ramp, counts bees on the ramp, and computes trajectories
for each bee currently on the ramp with greater than 85%
accuracy. It relies heavily on a series of Kalman filters
that are matched by optimizing a version of the assignment
problem. The whole pipeline can run locally at over 60
frames per second, and provides valuable insight for bee-
hive monitoring in a non invasive fashion. The real time
performance makes the system practical enough to deploy
in field on multiple hives. The entrance/exit counts our sys-
tem reports enables beekeepers to have early signals and
warning signs for colony health issues such as population
decline, robbing events, or unusual foraging patterns that
require a beekeeper’s immediate attention.

11. Contributions & Acknowledgments
This project was done alone, solely for this class. I’d

like to thank the CS231N teaching team for providing an
enjoyable and well-taught class.

References
[1] Appicultor. Varroa detector computer vision project -

https://universe.roboflow.com/appicultor/varroa-detector,
2023. 2

[2] S. Bilik, T. Zemcik, L. Kratochvila, D. Ricanek, M. Richter,
S. Zambanini, and K. Horak. Machine learning and computer
vision techniques in continuous beehive monitoring applica-
tions: A survey. Computers and Electronics in Agriculture,
217:108560, 2024. 1

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[4] G. Jocher and J. Qiu. Ultralytics yolo11, 2024. 1, 2
[5] P. Kongsilp, U. Taetragool, and O. Duangphakdee. Individ-

ual honey bee tracking in a beehive environment using deep
learning and kalman filter. Scientific Reports, 14(1):1061,
Jan 2024. 1

[6] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83–97,
1955. 4

[7] Y. Mahajan, D. Mehta, J. Miranda, R. Pinto, and V. Patil.
Neuralbee - a beehive health monitoring system. In 2023
International Conference on Communication System, Com-
puting and IT Applications (CSCITA), pages 84–89, 2023.
2

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[10] T. Sledevič and D. Matuzevičius. Labeled dataset for bee de-
tection and direction estimation on entrance to beehive. Data
in Brief, 52:110060, 2024. 2, 3

[11] B. J. Spiesman, C. Gratton, R. G. Hatfield, W. H. Hsu,
S. Jepsen, B. McCornack, K. Patel, and G. Wang. Assess-
ing the potential for deep learning and computer vision to
identify bumble bee species from images. Scientific Reports,
11(1):7580, 2021.

[12] Varroa Virus Detection. Varroa mites detector computer
vision project - https://universe.roboflow.com/varroa-virus-
detection/varroa-mites-detector, 2023. 2

[13] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods, 17:261–272,
2020.

